Hourglass of constant weight

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary Constant Weight Codes

Let A3(n, d,w) denote the maximum cardinality of a ternary code with length n, minimum distance d, and constant Hamming weight w. Methods for proving upper and lower bounds on A3(n, d,w) are presented, and a table of exact values and bounds in the range n ≤ 10 is given.

متن کامل

Optimal Constant Weight Codes

A new class of binary constant weight codes is presented. We establish new lower bound and exact values on A(n, 2k, k + 1), in particular, A(30, 12, 7) = 9, A(48, 16, 9) = 11, A(51,16, 9) = 12, A(58, 18, 10) = 12. An ( ) w d n , , constant weight binary code is a code of length n , code distance d in which all code words have the same number of “ones” . The number of “ones” is w . We will denot...

متن کامل

Constant-Weight Array Codes

Binary constant-weight codes have been extensively studied, due to both their numerous applications and to their theoretical significance. In particular, constant-weight codes have been proposed for error correction in store and forward. In this paper, we introduce constant-weight array codes (CWACs), which offer a tradeoff between the rate gain of general constant-weight codes and the low deco...

متن کامل

Arithmetic progressions with constant weight

Let k ≤ n be two positive integers, and let F be a field with characteristic p. A sequence f : {1, . . . , n} → F is called k-constant, if the sum of the values of f is the same for every arithmetic progression of length k in {1, . . . , n}. Let V (n, k, F ) be the vector space of all kconstant sequences. The constant sequence is, trivially, k-constant, and thus dim V (n, k, F ) ≥ 1. Let m(k, F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Granular Matter

سال: 2007

ISSN: 1434-5021,1434-7636

DOI: 10.1007/s10035-007-0081-z